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Introduction

Social interactions, positive externalities.
wearing a mask,
engaging in criminal activity,
technology adoption.

A typical result: emergence of a (homogeneous) convention.
But, in reality, conventions are often fuzzy:

some, but not all, wear masks,
married couples that use both IPhone and Android.
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Introduction
Granovetter 78: People care not only about their neighbors, but they
differ wrt. tastes, preferences.
P (x) - probability that you choose action 1 if at least fraction x of
your neighbors chooses 1.
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Introduction

City network with 160,000 agents, each agent has 120 neighbors.
Colors illustrate fraction of neighbors who play 1:

blue - most of the neighbors play 0, red - most of the neighbors play 1.
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Introduction

Fuzzy convention x : almost all agents observe ∼ x fraction of
neighbors playing 1.
Random-utility dominant outcome:

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy ,

risk-dominance (Harsanyi-Selten 88),
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Introduction
Results

Equilibrium selection
All sufficiently fine networks have an equilibrium that is fuzzy
convention x∗.
For some networks (“city”), fuzzy convention x∗ is the only
equilibrium.

Identification:
Maximum range of average equilibrium behavior across all networks.
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Introduction
Literature

Random utility models: matching (Dagsvik 00, Choo-Siow 06, Menzel
15, Peski 17, 22), games (Alvarez et al 22)
Dynamic coordination models:

evolutionary approach: Kandori et al 93, Young 93, Ellison 93, Ellison
00,
contagion: Lee Valentyi 00, Morris 00,
here - static equilibrium.

Bayesian equilibrium in network games: Jackson Yariv 07, Galeotti et
al 10

here: complete information
Large (but finite) degree networks.
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Introduction
Literature

1 Random utility dominant fuzzy convention on each network.
2 “Unique” selection on the city network.
3 Largest equilibrium set.
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RU-dominant convention

Agents i , j live on a network with weights gij = gji ≥ 0,
gi =

∑
j gij is degree of agent i ,

each node has one agent,
I.i.d payoff shocks τi ∼ P (.).
The average neighborhood behavior βa = (βa

i ), where

βa
i := 1

gi

∑
gijaj .

Profile a is equilibrium if for each i

τi ≤ βa
i =⇒ ai = 1.

Granovetter (78) is equivalent to a binary random-utility coordination
game.
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RU-dominant convention
Fuzzy convention

Definition
Profile a is ε-fuzzy convention x if

1
N {i : |βa

i − x | ≥ ε} ≤ ε.
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RU-dominant convention
Random utility dominant outcome

Definition
Random utility (RU-) dominant outcome

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy .
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RU-dominant convention
Random utility dominant outcome

x

P(x)

1

1x∗

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy .

Generically, (a) unique and (b) strictly stable fixed point of P.
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RU-dominant convention
Random utility dominant outcome

x

P(x)

A

B

x∗ = 0.3

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy .

RU-dominance chooses A equilibrium in the first example from the
introduction.
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RU-dominant convention
Random utility dominant outcome

x

P(x)

1

A

B

x∗ = 0.7

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy .

RU-dominance chooses B equilibrium in the second example from the
introduction.
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RU-dominant convention
Random utility dominant outcome

x∗ = 0
x

P(x)

1

de
te
rm

in
ist
ic

ga
m
e

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy .

When game is deterministic, RU-dominance is equivalent to
Harsanyi-Selten risk-dominance
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RU-dominant convention
Random utility dominant outcome

x

P(x)

1

de
te
rm

in
ist
ic

ga
m
e

x∗ = 1

x∗ ∈ arg max
x

xˆ

0

(
y − P−1 (y)

)
dy .

When game is deterministic, RU-dominance is equivalent to
Harsanyi-Selten risk-dominance.
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RU-dominant convention

Large degrees: Let d (g) = maxi ,j
gij
gi
→ 0.
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RU-dominant convention

Large degrees: Let d (g) = maxi ,j
gij
gi
→ 0.

Limited inequality: Let w (g) = maxi ,j
gi
gj
< w∗.
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RU-dominant convention

Theorem
For each η > 0 and w <∞,

lim
d(g)→0,w(g)≤w

Prob (∃a is equilibrium st. a is η-fuzzy convention x∗) = 1.

Each sufficiently fine network, with a large probability, has an equilibrium
that is a fuzzy convention x∗.
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RU-dominant convention

Granovetter’s model is a potential game (Monderer-Shapley 06):

V (a; τ) = 1
2
∑
i ,j

gijaiaj −
∑

giaiτi .

WTS the global maximizer of V “is” a fuzzy convention x∗.
Hence, fuzzy convention x∗ is also

robust to incomplete information (Ui 2001) and
stochastically stable under logistic dynamics (Blume 1993, 95).

Formula

x∗ ∈ arg max
x

xˆ

0

(P (y)− y) dy

appears in Morris and Shin (06) as a potential of the continuum
population Granovetter’s model.
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RU-dominant convention
Proof

Concentration inequality.
Calculations on the potential function:

V (a; τ) = 1
2
∑
i ,j

gijaiaj −
∑

giaiτi .
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RU-dominant convention
Proof: Concentration inequality

Law of Large Numbers: for each function f ,

1∑
gi

∑
i

gi f (τi , β
a
i )→ 1∑

gi

∑
i

gi E f (., βa
i ) as N →∞

(if w (g) = max gi
gj

remains bounded.)
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RU-dominant convention
Proof: Concentration inequality

Hoeffding: for each bounded function f ,

Prob
(∣∣∣∣∣∑

i
gi f (τi , β

a
i )−

∑
i

gi E f (., βa
i )

∣∣∣∣∣ ≥ ε∑ gi

)
≤ Bexp (−cεN) .
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RU-dominant convention
Proof: Concentration inequality

Uniform concentration:

Prob
(

sup
a

∣∣∣∣∣∑
i
gi f (τi , β

a
i )−

∑
i
gi E f (., βa

i )
∣∣∣∣∣ ≥ ε∑ gi

)
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RU-dominant convention
Proof: Concentration inequality

Uniform concentration: for each K -Lipschitz function f ,

Prob
(

sup
a

∣∣∣∣∣∑
i
gi f (τi , β

a
i )−

∑
i
gi E f (., βa

i )
∣∣∣∣∣ ≥ ε∑ gi

)
≤Bexp

(
−cε,K ,d(g)N

)
,

where limd→0 cε,K ,d = 0.
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RU-dominant convention
Proof: Concentration inequality

Prob
(

sup
a

F (βa) ≥ ε
)

= Prob
(

sup
β∈B

F (β) ≥ ε
)

≤ |B| sup
β∈B

Prob (F (β) ≥ ε)

= |B| sup
a

Prob (F (βa) ≥ ε) .

where B = {βa : a is a profile}

Marcin Pęski (University of Toronto) Fuzzy Conventions October 26, 2022 27 / 82



RU-dominant convention
Proof: Concentration inequality

Prob
(

sup
a

F (βa) ≥ ε
)

= Prob
(

sup
β∈B

F (β) ≥ ε
)

≤ |B| sup
β∈B

Prob (F (β) ≥ ε)

= |B| sup
a

Prob (F (βa) ≥ ε) .

where B = {βa : a is a profile}

Marcin Pęski (University of Toronto) Fuzzy Conventions October 26, 2022 27 / 82



RU-dominant convention
Proof: Concentration inequality

Prob
(

sup
a

F (βa) ≥ ε
)

= Prob
(

sup
β∈B

F (β) ≥ ε
)

≤ |B| sup
β∈B

Prob (F (β) ≥ ε)

= |B| sup
a

Prob (F (βa) ≥ ε) .

where B = {βa : a is a profile}

Marcin Pęski (University of Toronto) Fuzzy Conventions October 26, 2022 27 / 82



RU-dominant convention
Proof: Concentration inequality

Prob
(

sup
a

F (βa) ≥ ε
)

= Prob
(

sup
β∈B

F (β) ≥ ε
)

≤ |B| sup
β∈B

Prob (F (β) ≥ ε)

= |B| sup
a

Prob (F (βa) ≥ ε) .

where B = {βa : a is a profile}

Marcin Pęski (University of Toronto) Fuzzy Conventions October 26, 2022 27 / 82



RU-dominant convention
Proof: Concentration inequality

Prob
(

sup
a

F (βa) ≥ ε
)
≤ |B| sup

a
Prob (F (βa) ≥ ε) .
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RU-dominant convention
Proof: Concentration inequality

Prob
(

sup
a

F (βa) ≥ ε
)
≤ |B| sup

a
Prob (F (βa) ≥ ε) .

Unfortunately, counting measure is too large:

|B| = |{βa : a is a profile}| = |{a is a profile}| = 2N .
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RU-dominant convention
Proof: Concentration inequality

Prob
(

sup
a

F (βa) ≥ ε
)
≤ |B| sup

a
Prob (F (βa) ≥ ε) .

Fortunately, metric entropy is small enough, if d (g) is small

N (B, δ) ≤ exp
( 1
δ2 d (g)N

)
.
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RU-dominant convention
Proof: Concentration inequality

Prob
(

sup
a

F (βa) ≥ ε
)
≤N (B, δ) sup

a
Prob

(
sup

a′:‖a′−a‖≤δ
F
(
βa′) ≥ ε) .

Fortunately, metric entropy is small enough, if d (g) is small

N (B, δ) ≤ exp
( 1
δ2 d (g)N

)
.
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RU-dominant convention
Proof: Potential calculations

For each profile a,

V (a; τ) = 1
2
∑
i ,j

gijaiaj −
∑

giaiτi .

WTS the maximum cannot be higher than as if a is fuzzy convention
x∗.
But the maximum must be attained by equilibrium,

ai = 1 {τi ≤ βa
i } .
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RU-dominant convention
Proof: Potential calculations

For each equilibrium profile a,

V (a; τ) = 1
2
∑
i ,j

gij1 {τi ≤ βa
i } 1

{
τj ≤ βa

j

}
−
∑

gi1 {τi ≤ βa
i } τi .

Due to concentration inequalities

E 1 {τi ≤ βa
i } = P (βa

i ) ,

E 1 {τi ≤ βa
i } τi =

βa
iˆ

0

ydP (y) .
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RU-dominant convention
Proof: Potential calculations

For each equilibrium profile a,

V (a; τ) = 1
2
∑
i ,j

gijP (βa
i )P

(
βa

j

)
−
∑

gi

βa
iˆ

0

ydP (y) .
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RU-dominant convention
Proof: Potential calculations

Due to
2P (βa

i )P
(
βa

j

)
≤ P (βa

i )2 + P
(
βa

j

)2
,

for each equilibrium profile a,

V (a; τ) ≤
∑

i
gi

12 (P (βa
i ))2 −

βa
iˆ

0

ydP (y)

 .

The RHS is maximized by βa
i = x∗. QED.
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RU-dominant selection

So far: fuzzy convention x∗ is an equilibrium on each sufficiently fine
network.
Next: on some networks, there are no other equilibria.
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RU-dominant selection

Theorem
Suppose that 0 < P (0) < P (1) < 1.
For each η > 0, there is a network g such that with probability 1− η, each
equilibrium is η-fuzzy convention x∗.

The assumption ensures that, for each action, there is a positive
probability that the action is dominant.
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RU-dominant selection
Proof

2+-dimensional lattices (city network)
1-dimensional lattice (line) is not enough

A result about static equilibrium:
but proof based on best response dynamics.
review of contagion arguments (Ellison 93, Blume 95, Lee and
Valentinyi 00, Morris 00),
contagion wave on “toy” line,
why line is not enough and why 2-dimensional lattice is.
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RU-dominant selection
Proof: Review of contagion arguments

Start with deterministic case, but with small group of initial infectors.
Assume 0 is risk-dominant.
We want to show that 0 is the only equilibrium.
-> contagion.
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RU-dominant selection
Proof: Review of contagion arguments

Ellison 93: suppose that action 0 is risk-dominant,
initial infectors −1 ≤ i ≤ 0 play 0; the rests play 1,

−1
initial infectors

best response

"the rest"0
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RU-dominant selection
Proof: Review of contagion arguments
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RU-dominant selection
Proof: Review of contagion arguments

Ellison 93: suppose that action 0 is risk-dominant,
initial infectors −1 ≤ i ≤ 0 play 0; the rests play 1,
best response dynamics -> contagion

−1−1 0
initial infectors

contagion

best response

"the rest"
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RU-dominant selection
Proof: Review of contagion arguments

Blume 95- the same mechanics works on other networks, like 2 (or
higher)-dimensional lattices.
Key step: half of neighbors of “threshold agents” must be infected to
spread contagion.
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RU-dominant selection
Proof: Review of contagion arguments

Blume 93, Morris 00 - the same mechanics works on other networks,
like 2 (or higher)-dimensional lattices.
Key step: half of neighbors of “threshold agents” must be infected to
spread contagion.

neighborhoods

i

j

k
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RU-dominant selection
Proof: Review of contagion arguments

Blume 93, Morris 00 - the same mechanics works on other networks,
like 2 (or higher)-dimensional lattices.
Key step: half of neighbors of “threshold agents” must be infected to
spread contagion.

initial infectors

i

j

k
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RU-dominant selection
Proof: Review of contagion arguments

Blume 93, Morris 00 - the same mechanics works on other networks,
like 2 (or higher)-dimensional lattices.
Key step: half of neighbors of “threshold agents” must be infected to
spread contagion
- > initial infectors must be large enough relative to neighborhoods.

initial infectors

i

j

k
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RU-dominant selection
Proof: Contagion wave on toy line

Random utility payoffs (so, not deterministic)
Toy line: Continuum of agents in each location.
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RU-dominant selection
Proof: Contagion wave on line, RU case

f (j − i)

locations i j

gij

i − 1 i + 1

Toy line: agents in location i are connected with agents in location j
connection density gij = gji = gi+l,j+l for any l ,
gij = 0 for j > i + 1,
f (j − i) = 1

gi

´ j
i−1 gildl ,

f (x) + f (1− x) = 1.
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RU-dominant selection
Proof: Contagion wave on line, RU case

For simplicity, assume that x∗ = 0 is RU-dominant, i.e.
xˆ

0

(
y − P−1 (y)

)
dy < 0 for each x > 0.

Starting from arbitrary profile with a group of initial infectors playing
x∗, best response dynamics will spread x∗ to the whole line.
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RU-dominant selection
Proof: Contagion wave on line, RU case

Initial infectors play x∗ = 0.

initial infectors

best response

"the rest"0
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RU-dominant selection
Proof: Contagion wave on line, RU case

Initial infectors play x∗ = 0.

initial infectors

best response

"the rest"0
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RU-dominant selection
Proof: Contagion wave on line, RU case

Suppose that stops before spreading everywhere.

initial infectors
"the rest"0−1

amax
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RU-dominant selection
Proof: Contagion wave on line, RU case

If the contagion stops, then

ai ≤ P
(ˆ

ai+kdf (k)
)

for each i .

We are going to show that the above implies
ˆ amax

0

(
a − P−1 (a)

)
da ≥ 0

which will violate 0 being RU-dominant.
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RU-dominant selection
Proof: Contagion wave on line, RU case

If the contagion stops, then at each location i > 0,

ai ≤ P
(ˆ

ai+kdf (k)
)
.

Taking inverse and integrating by parts

P−1 (ai) ≤
ˆ

ai+kdf (k) =
ˆ amax

0
f (i − j) daj .

Integrate over ai ∈ [0, amax],
ˆ amax

0
P−1 (ai) dai ≤

ˆ amax

0

ˆ amax

0
f (i − j) dajdai .
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RU-dominant selection
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Integrate over ai ∈ [0, amax],
ˆ amax

0
P−1 (ai) dai

≤
ˆ amax

0

ˆ amax

0
f (i − j) dajdai

=1
2

ˆ amax

0
f (i − j) dajdai + 1

2

ˆ amax

0

ˆ amax

0
f (j − i) dajdai
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RU-dominant selection
Proof: Contagion wave on line, RU case

Integrate over ai ∈ [0, amax],
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0
P−1 (ai) dai

≤
ˆ amax

0

ˆ amax

0
f (i − j) dajdai

=1
2

ˆ amax

0
f (i − j) dajdai + 1

2

ˆ amax

0

ˆ amax

0
f (j − i) dajdai

=1
2

ˆ amax

0

ˆ amax

0
[f (i − j) + f (j − i)] dajdai
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RU-dominant selection
Proof: Contagion wave on line, RU case

Integrate over ai ∈ [0, amax],
ˆ amax

0
P−1 (ai) dai

≤
ˆ amax

0

ˆ amax

0
f (i − j) dajdai

=1
2

ˆ amax

0
f (i − j) dajdai + 1

2

ˆ amax

0

ˆ amax

0
f (j − i) dajdai

=1
2

ˆ amax

0

ˆ amax

0
[f (i − j) + f (j − i)] dajdai

Recall that f (i − j) + f (j − i) = 1.
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RU-dominant selection
Proof: Contagion wave on line, RU case

Integrate over ai ∈ [0, amax],
ˆ amax

0
P−1 (ai) dai

≤
ˆ amax

0

ˆ amax

0
f (i − j) dajdai

=1
2

ˆ amax

0
f (i − j) dajdai + 1

2

ˆ amax

0

ˆ amax

0
f (j − i) dajdai

=1
2

ˆ amax

0

ˆ amax

0
[f (i − j) + f (j − i)] dajdai

=1
2

ˆ amax

0

ˆ amax

0
dajdai =

ˆ amax

0
ada.
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RU-dominant selection
Proof: Contagion wave on line, RU case

Hence the contagion must spread to the entire line.
But! - so far we assumed that locations contain continuum.
Contagion can be also stopped by unusual payoff shocks, like those
that make 1 dominant.

initial infectors: 0 is dominant obstacles: 1 is dominant
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RU-dominant selection
Proof: Contagion wave on line, RU case

We can compare the relative likelihood of infectors vs obstacles.
On line, the latter can be more frequent.
But not on 2-dimensional lattices.
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Robust equilibria

So far,
each network has a fuzzy convention x∗ equilibrium,
some networks have only such equilibria.
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Robust equilibria

Let
a∗ (τi) = 1 {τi ≤ x∗} .

With a large probability, a∗ is a fuzzy convention x∗:

E a∗ (τi) = P (x∗) = x∗.
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Robust equilibria

The proofs show that
for each sufficiently fine network, with a large probability,
there exists an equilibrium that is close to a∗.

Among all behaviors a (τi), a∗ is the only one with such a property.
Equilibrium selection.
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Largest equilibrium set

So far, we showed that {x∗} is the smallest set among all equilibrium
sets of average behaviors across all networks.
Next: What is the largest?
Average equilibrium behavior

Av (a) = 1
N
∑

ai .
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Largest equilibrium set

Theorem
There exists a sequence of networks gn such that the sets of equilibrium
average behavior converge to [xmin, xmax].

P(x)

1

1
xmin xmaxequilibria
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Largest equilibrium set

Theorem
There exists a sequence of networks gn such that for each ε > 0

lim
n
Prob

(
∀x∈[xmin,xmax]∃a is equilibrium st. |Av (a)− x | < ε

)
= 1.

P(x)

1

1
xmin xmaxequilibria
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Largest equilibrium set

Let gn
complete be the complete graph with n nodes.

If x is a stable fixed point of P, then, for each η > 0,

lim
n→∞

Prob
(
{x} ⊆η Eq

(
gn

complete, ε
))
≥ 1− η.
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Largest equilibrium set

x

P(x)

1

1
xmin xmax

Generically, xmin and xmax - the smallest and the largest fixed points -
are stable.
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Largest equilibrium set

Idea: mix and match copies of complete networks.
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Largest equilibrium set

xmin xmax

Here, x = 2
8xmin + 6

8xmax.
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Largest equilibrium set

Theorem
All limit equilibrium sets are contained in [xmin, xmax].

P(x)

1

1
xmin xmax
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Largest equilibrium set

Theorem
For each η > 0 and w <∞,

lim
d(g)→0,w(g)≤w

Prob (a is equilibrium and Av (a) /∈ [xmin − η, xmax + η]) = 0.

P(x)

1

1
xmin xmax
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Largest equilibrium set

In fact, no equilibrium is larger than fuzzy convention x∗max and
smaller than fuzzy convention x∗min.
The largest equilibrium set is [xmin, xmax].
Unique equilibrium when xmin = xmax.
(Very partial) identification.
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Largest equilibrium set

Proof: similar to the proof of the first theorem.
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Conclusion

Random utility binary coordination games (Granovetter 78) on
networks.
We characterized the smallest and the largest possible set of
equilibrium average behaviors across all networks.
The smallest set achieved on 2-dimensional (but not necessarily
1-dimensional) lattice -> equilibrium selection theory

each networks fuzzy convention on RU-dominant outcome equilibrium,
some networks have only such equilibrium

The largest set achieved on a collection of complete graphs -> partial
identification theory,
Main assumptions:

independent payoff shocks,
large degree.

Marcin Pęski (University of Toronto) Fuzzy Conventions October 26, 2022 82 / 82


	Introduction
	RU dominant convention on each network
	Definitions
	Result
	Proof

	RU-dominant selection
	Proof: Contagion on lattices
	Proof: Contagion on line RU case
	Calculations
	Obstacle problem

	Robustness of fuzzy conventions
	Largest equilibrium set
	Lower bound
	Upper bound

	Conclusions

